近期,南方科技大学材料科学与工程系(简称“材料系”)教授郭旭岗课题组在有机和钙钛矿太阳能电池领域取得重要研究进展,先后在材料和化学领域高水平期刊连续发表6篇论文,包括《先进材料》(Advanced Materials) 2篇,《中国科学:化学》(SCIENCE CHINA Chemistry) 1篇,能源和环境科学(Energy & Environmental Science)1篇,《先进功能材料》(Advanced Functional Materials) 1篇,《美国化学会志》(Journal of the American Chemical Society) 1篇。
图1 (a)受体-受体型高分子受体材料L14和相应的受体-给体型受体材料L11的分子结构及其全聚合物太阳能电池性能曲线;(b)代表性的能量转化效率大于8%的全聚合物太阳能电池的效率和开路电压值。(Adv. Mater. 2020, 32, 2004183)
目前,基于稠环电子受体小分子的高分子受体材料已将全聚合物太阳能电池的能量转换效率提升至13%以上。但是,由于溴化端基的异构,稠环电子受体小分子单体通常由三种异构体的混合物组成。在最新的工作中,课题组成功分离了两个异构端基,解决了区域异构问题。以此为基础,合成了三个聚合物受体材料PY-IT,PY-OT和PY-IOT(图2),其中PY-IT和PY-OT是结构规整的受体-给体型共聚物,PY-IOT为三元无规共聚物,两种受体单体比例为1:1。紫外吸收光谱测试表明从PY-OT,PY-IOT到PY-IT,吸收边界逐渐红移,从而有利于对太阳光的吸收。理论计算表明,相对于PY-OT和PY-IOT,PY-IT的最低未占有分子轨道(LUMO)能够离域在整个分子骨架上,从而有效地增强了受体材料的电子传输能力。以PY-IT为电子传输材料的全聚合物太阳能电池实现了15.05%的能量转换效率,远高于PY-OT(10.04%)和PY-IOT(12.12%)的电池性能,15.05%的效率也是迄今为止全聚合物电池的最高值。这项工作表明,稠环电子受体单体上的聚合位点将对器件性能产生显著影响,为发展高性能高分子受体材料奠定了重要实验和理论基础。相关研究成果在《先进材料》上发表。课题组研究助理教授孙会靓为该论文的通讯作者。
图2三种高分子受体材料PY-IT,PY-OT和PY-IOT的化学结构。 基于PY-IT的全聚合物太阳能电池的能量转换效率为15.05%,远高于基于PY-OT(10.04%)和PY-IOT(12.12%)电池的性能。(Adv. Mater. 2020, 32, 2005942)
课题组通过对比基于新型双噻吩酰亚胺衍生物(BTIn)的高分子受体材料和经典高分子受体材料N2200,系统深入地研究了高分子受体材料LUMO能级变化对于全聚合物太阳能电池能量损失及器件性能的影响,开发了具有高开路电压和超低非辐射损失的全聚合物太阳能电池。利用缺电子单元BTIn结合侧链工程和随机共聚的分子设计策略,合成了两个新型BTIn高分子受体SPA1和SPA2,与经典萘二酰亚胺高分子受体相比,BTIn高分子具有可调的LUMO能级(图3)。因此可以通过提升LUMO能级减小高分子给体和高分子受体材料间LUMO的差异,从而提升开路电压值。电致发光和高灵敏外量子效率测试结果表明,与N2200纯膜及其混合膜C相比,SPA1纯膜与相应共混膜A具有相同发射峰且未观察到明显的电荷转移态峰,使得基于SPA1的全聚合物太阳能电池获得了1.15 V的开路电压。通过进一步调节LUMO能级,基于SPA2(混合膜 B)的全聚合物太阳能电池可以同时获得高开路电压指(1.02 V)和外量子效率光响应(最大值大于> 70%)。在该体系中,尽管电荷解离驱动力趋近于0,但仍可发生超快电荷转移,并发现基于SPA1和SPA2的全聚合物太阳能电池都具有高的发光量子效率(0.8×10-3和0.1×10-4),远高于基于N2200的全聚合物太阳能电池(0.4×10-7),使得电池的非辐射复合损失分别低至0.16 eV和0.29 eV。最终在未使用任何添加剂的条件下,全聚合物太阳能电池的能量转换效率分别为4.46%和9.21%。其中4.46%的效率是有机太阳能电池中非辐射损失低至0.16 eV时的最高值,9.21%的效率是所报道基于非小分子受体高分子的全聚合物太阳能电池的最高值之一。相关研究成果在《中国科学:化学》上发表。课题组研究助理教授孙会靓和南科大-北大联合培养博士生刘斌为该论文共同第一作者,郭旭岗为通讯作者。
构筑三元有机太阳能电池是提升电池效率的有效策略。然而,该策略在全聚合物太阳能电池中的应用十分有限,这是因为缺乏高效率的窄带隙高分子受体材料和多元高分子共混造成的形貌难以控制的挑战。课题组前期在《先进材料》中首次报道了具有超窄带隙(1.38 eV)的高分子半导体材料DCNBT-TPC,该半导体在长波区域具有很强的吸收,打破了长期以来限制高分子受体材料在二元全聚合物电池中性能的瓶颈。在此基础上,课题组发表在《先进功能材料》上的论文将该高分子半导体与宽带隙的PBDB-T和中等带隙的PTB7-Th共混制备的三元全聚合物电池获得了21.9 mA cm 2的短路电流密度和12.1%的能量转换效率(图5),打破了现有三元全聚合物太阳能电池的效率记录。这表明利用超窄带隙的高分子受体材料与相容的高分子给体材料共混制备三元全聚合物太阳能电池是推进全聚合物太阳能电池发展的强有力手段。课题组博士后冯奎为该论文第一作者,郭旭岗为通讯作者。
图5 (a)高分子半导体材料PBDB-T、PTB7-Th和DCNBT-TPC的分子结构;(b)PBDB-T、PTB7-Th和DCNBT-TPC薄膜的紫外-可见吸收光谱图;(c)两元和三元全聚合物太阳能电池的电压-电流密度特征曲线。(Adv. Funct. Mater. 2020, 2008494)
近年来,在钙钛矿太阳能电池研究领域,电荷传输材料的设计与界面的研究越来越受到研究者的关注,因为其对钙钛矿太阳能电池的能量转化效率及器件性能的稳定性都起着至关重要的作用。例如,对于空穴传输材料的研究一直颇受材料学家的重视,为了加快钙钛矿太阳能电池的产业化进程,空穴传输材料应同时满足以下三个需求:高性能(包括高光电转换效率与高稳定性)、低成本、绿色环保溶剂加工。虽然最近一些高效的空穴传输材料被开发出来,但能同时满足以上三个要求的材料鲜有报道。郭旭岗课题组通过在一种简单的给体-受体型分子骨架上引入2-氰基丙烯酸基团,设计合成了低成本,可醇溶剂加工的小分子空穴传输材料(MPA-BT-CA),用于倒置钙钛矿太阳能电池可获得高达21.24%的能量转换效率与不错的器件性能稳定性。采用乙醇作为加工溶剂,器件效率仍可达到20.5%(图 6)。相关研究成果在《美国化学会志》封面发表,并被选为亮点(Spotlights on Recent JACS Publications)进行报道(https://pubs.acs.org/doi/pdf/10.1021/jacs.0c10589)。课题组高级研究学者王漾和2018级南科大-哈工大联合培养博士生廖巧干为该论文共同第一作者,郭旭岗为通讯作者。
图6 文献报道的代表性的低成本、绿色溶剂加工的或高性能的空穴传输材料以及本工作的材料设计思路。(J. Am. Chem. Soc. 2020, 142, 16632)
图7 《美国化学会志》论文封面
以上研究得到了深圳大学教授杨楚罗团队、香港科技大学教授颜河团队、瑞典林雪平大学教授高峰团队、浙江大学教授陈红征团队、北京交通大学教授张福俊团队、天津大学教授叶龙团队、中科院重庆研究院研究员阚志鹏、北京理工大学副教授安桥石、美国西北大学教授Antonio Facchetti和Tobin J. Marks团队和南方科技大学分析测试中心的支持。